Magnehelic. Accessory Guide

INCHES OF WATER

MAGNEHELIC CALIBRATED FOR

MAX, PRESSURE 15 PSIG TA FER IN LINE ATATS, INC.

111111

www.dwyer-inst.com

total instrument solution

Customer Service

Technical Support

Prompt Shipments

Address:

P.O. Box 373

Dwyer Instruments, Inc.

102 Indiana Highway 212

Michigan City, IN 46361 U.S.A.

CUSTOMER SERVICE

Fast, friendly customer service professionals are available to process and provide assistance with your order – whether it is by phone, fax, e-mail or through our website.

TECHNICAL SUPPORT

Have an application question? Our technical support professionals are trained to provide you with the answers you need.

PROMPT SHIPMENTS

After you place your order, Dwyer's dedicated shipping staff packs and ships your order promptly and completely –within 24 hours on most in-stock items.

WEBSITE

Dwyer Instrument's website delivers the convenience you want. Go to www.dwyer-inst.com for the most complete ordering and product support information at your fingertips – anytime, day or night. Installation and operating manuals are available on products that are easily downloadable to your computer or printer.

Total customer service the way you need it.

www.dwyer-inst.com

e-mail:

General: info@dwyer-inst.com Literature: lit@dwyer-inst.com Technical: tech@dwyer-inst.com Quotes: quotes@dwyer-inst.com

Telephone: (800) 872-9141 (219) 879-8000

website: http://www.dwyer-inst.com http://www.love-controls.com http://dwyer-inst.com/retail http://proximitycontrols.com

Fax: (219) 872-9057

Introduction

Dwyer Instruments has and continues to be the leading manufacturer and innovator in specialty gage application and design. Most notably, the Dwyer Magnehelic[®] remains the hallmark of the industry for low pressure indication and measurement, and has been industry proven through its robust design and field performance.

> Dwyer is proud to compliment this versatile instrument with the new Magnehelic® Accessory Guide. This guide will assist with selecting the proper features, options and accessories required in your unique applications that utilize the Magnehelic[®] gage. From air flow scales to the new flush mounting kit for panels to popular static pressure sensors, this guide includes the complete offering of Magnehelic[®] options and accessories.

We have always felt that the best does not have to cost you the most, and encourage you, the customer, to check out our value and what we believe to be the most competitively priced products on the market.

Sincerely, Dwyer Instruments Team

PAGE

Series 2000 Magnehelic [®] Differential Pressure Gage1-2
Magnehelic [®] Options
Magnehelic [®] Chrome/Steel Bezels4
Portable Magnehelic [®] Pressure-Air Velocity Gages4
Mounting Accessories5
Other Mounting Options
Flush-Mount Kit for Magnehelics [®] 6
Flush-Mount Space Pressure Sensor6
Static Pressure Accessories
Fittings-Adapters
Valves-Connectors-Snubbers8
Optional Accessory Kits for Air Filters

INCHES OF WATER

.05

.05 additable black in 15

AGNEHELIC IBRATED FOR

ESSURE 15 PSIG

.10

Filters
Gage Tubing
Pumps
Related Products10
Series 605 Magnehelic [®] with 4-20 mA
Transmitter Output11
Pitot Tubes for Sensing Air Velocity12
Series 4000 Capsuhelic [®] Differential
Pressure Gage
Series DH Digihelic [®] Differential Pressure Controller15
Pressure Conversion Chart16

PAGE

Magnehelic[®] Differential Pressure Gages

Indicate Positive, Negative or Differential, Accurate within 2%

Patent Nos. 4,030,365 and 5,012,678 Standard Magnehelic[®] Pressure Gage has a large, easy-to-read 4" dial.

Select the Dwyer Magnehelic[®] gage for high accuracy — guaranteed within 2% of full scale — and for the wide choice of models available to suit your needs precisely. Using Dwyer's simple, frictionless Magnehelic[®] movement, it quickly indicates low air or non-corrosive gas pressures — either positive, negative (vacuum) or differential. The design resists shock, vibration and over-pressures. No manometer fluid to evaporate, freeze or cause toxic or leveling problems. It's inexpensive, too.

The Magnehelic[®] is the industry standard to measure fan and blower pressures, filter resistance, air velocity, furnace draft, pressure drop across orifice plates, liquid levels with bubbler systems and pressures in fluid amplifier or fluidic systems. It also checks gas-air ratio controls and automatic valves, and monitors blood and respiratory pressures in medical care equipment.

NOTE: May be used with Hydrogen where pressures are less than 35 psi.

Quality Design and Construction Features

Bezel provides flange for flush mounting in panel. —

Clear plastic face is highly resistant to breakage. Provides undistorted viewing of pointer and scale.

Precision litho-printed scale is accurate and easy to read.

Red tipped pointer of heat treated aluminum tubing is easy to see. It is rigidly mounted on the helix shaft.

Pointer stops of molded rubber prevent pointer over-travel without damage.

"Wishbone" assembly provides mounting for helix, helix bearings and pointer shaft.

Jeweled bearings are shock-resistant mounted; provide virtually friction-free motion for helix. Motion damped with high viscosity silicone fluid.

Zero adjustment screw is conveniently located in the plastic cover, and is accessible without removing cover. O-ring seal provides pressure tightness.

SPECIFICATIONS

Service: Air and non-combustible, compatible gases. (Natural Gas option available.) Wetted Materials: Aluminum, silicone, acrylic, polycarbonate, high carbon steel, low carbon steel, brass, paper, acrylic paint, enamel paint, alkyd coating, nickel plate, zinc plate, Helsel® FC, 300 series stainless steel, Teflon®, Loctite® AV sealant, commercial black rubber, neoprene, samarium cobalt, nickel alloy steel, beryllium copper.

Housing: Die cast aluminum case and bezel, with acrylic cover. Exterior finish is coated gray to withstand 168 hour salt spray corrosion test.

Accuracy: $\pm 2\%$ of full scale ($\pm 3\%$ on -0, -100PA, -125PA, 10MM and $\pm 4\%$ on -00, -60PA, -6MM ranges), throughout range at 70°F (21.1°C).

Pressure Limits: -20" Hg. to 15 psig. (-0.677 bar to 1.034 bar); MP option: 35 psig (2.41 bar), HP option: 80 psig (5.52 bar).For applications with high cycle rate within gage total pressure rating, next higher rating is recommended.

Overpressure: Relief plug opens at approximately 25 psig (1.72 kPa), standard gages only.

Temperature Limits: 20 to 140°F (-6.67 to 60°C).

Size: 4" (101.6 mm) Diameter dial face.

Mounting Orientation: Diaphragm in vertical position. Consult factory for other position orientations.

 $Process\ Connections:$ 1/8" female NPT duplicate high and low pressure taps - one pair side and one pair back.

Weight: 1 lb 2 oz (510 g), MP & HP 2 lb 2 oz (963 g).

Standard Accessories: Two 1/8" NPT plugs for duplicate pressure taps, two 1/8" pipe thread to rubber tubing adapters and three flush mounting adapters with screws. (Mounting and snap ring retainer substituted for 3 adapters in MP & HP gage accessories.)

 O-ring seal for cover assures pressure integrity of case.

 Blowout plug of silicone rubber protects against overpressure on 15 psig rated models. Opens at approximately 25 psig.

Die cast aluminum case is precision made and iridite-dipped to withstand 168 hour salt spray corrosion test. Exterior finished in baked dark gray hammerloid. One case size is used for all standard pressure options, and for both surface and flush mounting.

Silicone rubber diaphragm with integrally molded O-ring is supported by front and rear plates. It is locked and sealed in position with a sealing plate and retaining ring. Diaphragm motion is restricted to prevent damage due to overpressures.

Calibrated range spring is flat spring steel. Small amplitude of motion assures consistency and long life. It reacts to pressure on diaphragm. Live length adjustable for calibration.

Samarium Cobalt magnet mounted at one end of range spring rotates helix without mechanical linkages.

Helix is precision made from an alloy of high magnetic permeability. Mounted in jeweled bearings, it turns freely, following the magnetic field to move the pointer across the scale.

Series 2000 Magnehelic[®] - Models & Range<mark>s</mark>

STOCKED MODELS in bold

Model Number	Range Inches of Water	Model Number	Range PSI	Dual Scale Air ^v Model Number	Velocity Units Range in W.C. Velocity, F.P.M.	Model Number	Range, CM of Water		odel mber	Range, Pascals
2000-00N†•• 2000-00†• 2000-0†• 2001 2002 2003 2004	.05-02 025 050 0-1.0 0-2.0 0-3.0 0-3.0	2201 2202 2203 2204 2205 2210* 2215*	0-1 0-2 0-3 0-4 0-5 0-10 0-15	2000-00AV†•• 2000-0AV†• 2001AV 2002AV 2002AV 2010AV For use with	025/300-2000 050/500-2800 0-1.0/500-4000 0-2.0/1000-5600 0-10/2000-12500 Pitot tube.	2000-1CM 2000-2CM 2000-3CM 2000-4CM 2000-5CM 2000-6CM	0-1 0-2 0-3 0-4 0-5 0-6	2000- 2000- 2000- 2000- 2000- 2000-	60PA†•• 100PA†• 125PA†• 250PA 300PA 500PA 750PA	0-60 0-100 0-125 0-250 0-300 0-500
2004 2005 2006 2008 2010 2015	0-4.0 0-5.0 0-6.0 0-8.0 0-10 0-15	2220* 2230** *** MP option *** HP option	0-20 0-30 standard standard	Model Number 2000-6MM†••	Range MM of Water 0-6	2000-8CM 2000-10CM 2000-15CM 2000-20CM 2000-25CM	0-8 0-10 0-15 0-20 0-25	2300- 2300- 2300 -	60PA†•• 120PA†• 250PA 500PA	0-750 30-0-30 60-0-60 125-0-125 250-0-250
2015 2020 2025 2030 2040	0-20 0-25 0-30 0-40	Model Number 2000-5HG	Range, Inches HG 0-5	2000-8MM†• 2000-10MM†• 2000-15MM 2000-20MM	0-8 0-10 0-15 0-20	2000-30CM 2000-40CM 2000-50CM 2000-60CM 2000-80CM	0-30 0-40 0-50 0-60 0-80	N 2000-		Range, Kilopascals 0-1
2050 2060 2080 2100 2150	0-50 0-60 0-80 0-100 0-150	2000-6HG 2000-10HG 2000-15HG* 2000-20HG* 2000-25HG* 2000-30HG*	0-6 0-10 0-15 0-20 0-25	2000-25MM 2000-30MM 2000-40MM 2000-50MM 2000-60MM 2000-80MM	0-25 0-30 0-40 0-50 0-60 0-80	2000-100CM 2000-150CM 2000-200CM 2000-250CM 2000-250CM 2000-300CM	0-100 0-150 0-200 0-250 0-300	2000- 2000- 2000- 2000- 2000-	1.5KPA 2KPA 3KPA 4KPA 5KPA	0-1.5 0-2 0-3 0-4 0-5
2300-0†• 2301 2302 2304 2310	.25-025 .5-05 1-0-1 2-0-2 5-0-5	2000-40HG* 2000-50HG** 2000-60HG** *MP optio	0-30 0-40 0-50 0-60 n standard	2000-00MM 2000-100MM 2000-150MM 2000-200MM 2000-250MM 2000-300MM	0-00 0-100 0-150 0-200 0-250 0-300	2300-2CM 2300-4CM 2300-10CM 2300-20CM	1-0-1 2-0-2 5-0-5 10-0-10 15-0-15	2000- 2000- 2000- 2000-	8KPA 10KPA 15KPA 20KPA 25KPA	0-8 0-10 0-15 0-20 0-25
2310 2320 2330	10-0-10 15-0-15	**HP optic Model Number	n standard Range, MM HG	2000-300MM 2000-500MM 2000-1000MM 2300-20MM†• 2300-30MM	0-500 0-500 0-1000 10-0-10 15-0-15	2300-30CM Dual Scale Englis		2300	30KPA -1KPA -3KPA	0-30 .5-05 1.5-0-1.5
		2000-4MMHG 2000-10MMHG	0-4 0-10	Model Number	Range, mBar	Model Number	Range In. W.		F	Range, Pa or kPa
 †These ranges calibrated for vertical scale position. Accuracy +/-3%. Accuracy +/-4%. 			2000-20MBAR 2000-25MBAR 2000-50MBAR 2000-60MBAR 2000-500MBAR* 2300-20MBAR	0-20 0-25 0-50 0-60 0-500 10-0-10 n standard	2000-0D†• 2001D 2002D 2003D 2004D 2006D 2006D 2008D 2010D	0-0.5 0-1.0 0-2.0 0-3.0 0-4.0 0-6.0 0-8.0 0-10)-125PA -250PA -500PA -700PA -1.0KPA -1.5KPA -2.0KPA -2.5KPA	

OPTIONS (add below suffixes to model number, example: 2001-SB)

-ASF, Adjustable Signal Flag -SP, Set Point Indicator -AT, Aluminum Tag -ST, Stainless Steel Tag

-BUNA, BUNA-N Elastomers -VIT, Viton® Elastomers

-HP, High Pressure Option, rated for internal pressures up to 80 psig -MP, Medium Pressure Option, rated for internal pressures up to 35 psig -LT, Low Temperature, temperatures to -20°F (-29°C)

-NIST, NIST Certificate of Calibration -CB, Chrome Bezel -SB, 304 Stainless Steel Bezel

-SF, Silicone Free

-R, Red Scale Overlay

-Y, Yellow Scale Overlay

-G, Green Scale Overlay -M, Mirror Scale Overlay

Natural Gas Model

-BUNA-IC, BUNA-N Elastomers & Impregnated Case

Magnehelic[®] Options

AVAILABLE OPTIONS

LED Setpoint Indicator

Bright red LED on right of scale shows when setpoint is reached. Field adjustable from gage face, unit operates on 12-24 VDC. Setpoint indicator option comes with medium pressure (MP) bezel. -SP

Adjustable Signal Flag Integral with plastic gage cover. Available for most models except those with medium or high pressure construction. Can be ordered with gage or separate. -ASF

Transparent Overlays

Furnished in red, yellow, or green to highlight and emphasize critical pressures.

-R (Red) -Y (Yellow)

-G (Green)

Mirrored Scale Overlay

A Mirrored Scale Overlay is also available to assist in reducing parallax error. -M

MODELS FOR HIGH STATE PRESSURE APPLICATIONS

Medium Pressure Option: for pressures to 35 psig.

High Pressure Option: for pressures to 80 psig.

-HP

-MP

Installation is similar to standard gages except that a 4-13/16" hole is needed for flush mounting. The medium pressure construction is rated for internal pressures up to 35 psig and the high pressure up to 80 psig. Available for all models. Because of larger case, the medium pressure and high pressure models will not fit in a portable case size. Installation of the A-321 safety relief valve on standard Magnehelic[®] gages often provides adequate protection against infrequent overpressure.

VELOCITY AND VOLUMETRIC FLOW UNITS

Scales are available on the Magnehelic[®] that read in velocity units (FPM, m/s) or volumetric flow units (SCFM, m³/s, m³/h). Stocked velocity units with dual range scales in inches w.c. and feet per minute are shown on page 2. For other ranges contact the factory.

When ordering volumetric flow scales please specify the maximum flow rate and its corresponding pressure. Example: 0.5" w.c. = 16,000 CFM.

PRIVATE LABELED GAGES

Special scales with company logo or information can be crafted for the Magnehelic[®]. Please consult the factory for pricing.

NEW! Magnehelic[®] Chrome/Steel Bezels

Stainless Steel Bezel Option:

304 Stainless Steel Electro polished Ra 16 finished bezel for the Magnehelic[®] is now available. This stainless steel bezel is ideal for Magnehelics[®] mounted in clean rooms, pharmaceutical plants, medical and bio-medical facilities and in many locations where a chemical washdown occurs.

Chrome Bezel Option:

A Chrome Plated Aluminum Bezel is now available on the Magnehelic[®] gage for an aesthetically pleasing finish when mounting on metal surfaces such as control panels.

To Order Add Suffix -SB

To Order Add Suffix -CB

Portable Magnehelic® Pressure-Air Velocity Gages

POPULAR MODELS

Model	Pressure, Inches w.c.	Velocity, FPM
2000-00AV-Port†	025	300-2000
2000-0AV-Port†	050	500-2800
2001AV-Port	0-1.0	500-4000
2002AV-Port	0-2.0	1000-5600
2010AV-Port	0-10	2000-12,500

Use with Pitot tube for air velocity measurement or without for pressure measurement. Easy and quick to use, Portable Magnehelic[®] Gages with dual scale are less sensitive to level than liquid gages, yet offer accuracy to $\pm 2\%$ over the full scale. †Air Velocity Scale provides direct reading for standard air without conversions. They are handy to use on a ladder or in confined locations encountered in field testing. Dwyer magnetic linkage provides exceptionally responsive, consistently accurate indication of air velocity, positive, negative or differential pressures in air and non-corrosive gases. Pointer movement is inertia-free and drift-free. Highly resistant to shock and vibration.

Portable Magnehelic[®] Unit Includes:

Choice of 5 models — Scales from 0-.25" w.c., 300-2000 FPM. to 0-10" w.c., 2000-12,500 FPM. Maximum total pressure rating 15 psig. Ambient temperature range 30 to 140°F. Aluminum stand iridite-dipped; gage has baked gray hammerloid finish. Furnished in gray plastic carrying case. Connections include 1/8" NPT high and low pressure taps, duplicatedone pair side and one pair back. Two 1/8" NPT plugs included. Rubber Tubing and Adapters — One 9 ft. length of 3/16" I.D. tubing, terminal tube and two pipe thread to tubing adapters.

†2000-00 - 4% accuracy; 2000-0 - 3% accuracy

Mounting Accessories

MOUNTING. A single case size is used for most models of Magnehelic[®] gages. They can be flush or surface mounted with standard hardware supplied. Complete mounting and connection fittings plus instructions are furnished with each instrument. A 4-9/16" hole is required for flush panel mounting.

Flush mounting is easily accomplished with the new A-300 Flush Mounting bracket. This bracket provides a solution to quickly and conveniently flush mount the Magnehelic[®]. The A-300 is ideal for mounting the Magnehelic[®] on control panel doors.

The A-368 is a simple bracket for quickly surface mounting the Magnehelic[®] gage. After securing the Magnehelic[®] to the A-368 bracket, mount the bracket on any flat surface.

The A-369 allows the Magnehelic[®] to be easily carried to locations where pressure readings need to be taken. The A-369 can stand on its own or hang on a nail or hook.

Flush

Surface

A-300, Flush Mounting Bracket

A-368, Surface Mounting Plate, aluminum, for Magnehelic[®] gage

Portable

A-369

A-369, Stand-Hang Bracket, aluminum, for Magnehelic[®] gage

Other Mounting Options

Pipe A-610, Pipe Mounting Kit for installing on 1-1/4" to 2" horizontal or vertical pipe

A-371

A-299, Mounting Bracket, flush mount for Magnehelic® Gage. Bracket is then surface mounted. Steel with gray hammertone epoxy finish

A-371, Surface Mounting Bracket. Use with medium pressure (-MP) or high pressure (-HP) models only

NEW! Flush-Mount Kit for Magnehelics[®]

Ideal for Clean Rooms & Control Panels

The A-464 mounting kit provides a flush mounting solution for Magnehelic[®] gage installations for applications such as clean rooms and mechanical equipment rooms. The A-464 can also be used as an alternative means to flush mount Magnehelic[®] gages on control panel enclosures. The space pressure reference port eliminates the need to drill separate holes and run tubing long distances. Utilizing the A-464 for Magnehelic[®] installations reduces installation time while also producing an aesthetically pleasing result.

Advantages and Specifications of the A-464 Kit

- Provides an innovative solution for flush mounting Magnehelic[®] gages.
- Space pressure reference integral to mounting plate.
- Mounting applications include: Sheetrock walls, control panel enclosures and air handling equipment.
- Eliminates the need for special hole saws.
- Creates a professional look.
- Saves installation time and money.
- Outside dimensions: 6-1/4 x 6-1/4 x 1/4 inches (15.9 x 15.9 x 0.6 cm).
- Material: White ABS plastic.

STOCKED MODEL

A-464

A-464 Back View Shown with A-465

NEW! Flush-Mount Space Pressure Sensor

Ideal for Clean Rooms

The A-465 Space Pressure Sensor Kit provides a clean solution for sensing space pressure. Typical applications include: sensing the pressure in clean rooms, laboratories and building lobbies. The kink resistant tubing provided in the kit is connected to the tubing running to a pressure transducer, Magnehelic® Gage, VAV unit or any other types of pressure sensing devices. The sensor can be mounted on sheetrock walls, single gang electrical boxes or on ceiling tiles. The block free pressure reference opening along with the kink resistant tubing ensure accurate readings at all times.

Advantages and Specifications of the A-465 Kit

- The professional way to sense space pressure.
- Mounting options include: Sheetrock walls, ceiling tiles or single gang electrical boxes.
- Non block reference opening prevents plugging.
- Saves time and money.
- Outside dimensions: 2-3/4 x 4-1/2 x 1/4 inches (6.9 x 11.4 x 0.6 cm).
- Attractive design blends in with building decor.
- Materials: White ABS plastic.

STOCKED MODEL

A-465

Static Pressure Accessories

Sensing Static Pressure

For most industrial and scientific applications, the only air measurements needed are those of static pressure, total pressure and temperature. With these, air velocity and volume can be quickly calculated.

To sense static pressure, six types of devices are commonly used. These are connected with tubing to a pressure indicating instrument.

Fig. 1-A shows a simple thru-wall static pressure tap. This is a sharp, burr-free opening through a duct wall provided with a tubing connection of some sort on the outside. The axis of the tap or opening must be perpendicular to the direction of flow. This type of tap or sensor is used where air flow is relatively slow, smooth and without turbulence. If turbulence exists, impingement, aspiration or unequal distribution of moving air at the opening can reduce the accuracy of readings significantly.

Fig. 1-B shows the Dwyer No. A-308 Static Pressure Fitting. Designed for simplified installation, it is easy to install, inexpensive, and provides accurate static pressure sensing in smooth air at velocities up to 1500 FPM.

A-307, Static Pressure Fitting, for ¼" metal tubing connection A-307-SS, same as above in Stainless Steel A-308, Static Pressure Fitting, for ¾6" and ½" I.D. plastic or rubber tubing A-414, SS Clean Room Pressure Sensor

Fig. 1-C shows a simple tube through the wall. Limitations of this type are similar to wall type Fig. 1-A.

A-304, Duct Connector

Fig. 1-D shows a static pressure tip which is ideal for applications such as sensing the static pressure drop across industrial air filters and refrigerant coils. Here the probability of air turbulence requires that the pressure sensing openings be located away from the duct walls to minimize impingement and aspiration and thus insure accurate readings. For a permanent installation of this type, the Dwyer No. A-301 or A-302 Static Pressure Tip is used. It senses static pressure through radially-drilled holes near the tip and can be used in air flow velocities up to 12,000 FPM. The angled tips shown have 4" insertion depth. Each has four radially drilled .040" sensing holes. All except Model A-303 mount in 3/8" hole in duct. For portable use, a magnet holds No. A-303 in place.

A-301, Static Pressure Tip, for ¼" metal tubing connection

A-301-A, Static Pressure Tip, same as A-301 with 6⁻⁻ insertion depth

A-301-B, Static Pressure Tip, same as A-301 with 8" insertion depth

- A-301-C, Static Pressure Tip, same as A-301 with 12" insertion depth
- A-301-SS, same as A-301 in Stainless Steel

A-302, Static Pressure Tip, for [%] and [%] I.D. plastic or rubber tubing A-302-A, Static Pressure Tip, same as A-302 with 6" insertion depth

- A-303, Portable Static Pressure Tip, for %" I.D. rubber or plastic tubing with 4" insertion
- A-345, Flange for mounting A-301, A-302, A-307, A-308 or ½" dia. Pitot Tubes with compression fitting when interior of duct is not accessible. Aluminum, with gasket and sheet metal screws

Fig. 1-E shows a Dwyer No. A-305 low resistance Static Pressure Tip. It is designed for use in dust-laden air and for rapid response applications. It is recommended where a very low actuation pressure is required for a pressure switch or indicating gage — or where response time is critical.

A-305, Static Pressure Tip, low resistance application, furnished with two (2) hex jam nuts and two (2) mounting washers for duct mounting and with %" NPT pipe thread for pressure connection

A-305-SS, same as A-305 in Stainless Steel

Types of Static Pressure Sensing Devices

A-308

A-304

A-414

Fittings & Connectors

Fittings - Adapters

Valves - Connectors - Snubbers

A-323, Elbow Compression Fitting, brass ½" NPT to ½" metal tubing A-324, Compression Fitting, brass ½" NPT to ½" metal tubing A-326, Compression Fitting, brass ½" NPT to ½" tubing

A-330, 1/8" Pipe Plug, socket hex, plated steel

A-332,	Bushing, brass, 1/8" to 1/4" NPT
A-333,	Bushing, brass, 1/8" to 1/2" NPT
A-334,	Close Nipple, brass, 1/8" NPT
A-336,	90° Street L, brass, ¹ / ₈ " NPT
A-337,	Coupling, brass, ¼" NPT

A-339, Adapter, brass, ³/₆" NPT to ³/₆" rubber and ³/₆" I.D. plastic tubing A-340, Adapter, nylon, ³/₆" NPT to ³/₆" I.D. rubber or ³/₄" plastic tubing

A-342, "T" Assembly, plastic, for %" I.D. rubber or %" plastic tubing A-343, "T" Assembly, plastic, for %" plastic tubing A-343-1, "T" Assembly, plastic, for %" I.D. plastic tubing

A-346, "T" Compression Fitting, brass, ¼" metal tubing

A-349, Reducer, brass, ¼" female NPT to ½" male NPT

A-310A, 3-Way Vent Valve, plastic, %" NPT to %" metal tubing. Positions are: (1) Line: Gage connected to pressure source. (2) Off: Both gage and connection to pressure source closed. (3) Vent: Gage vented to atmosphere and connection to pressure source closed. 80 psi rating. Replaces former model A310 (brass). In applications where pressure is continuous and the Magnehelic® gage is connected by metal or plastic tubing which cannot be easily removed, we suggest using Dwyer A-310A vent valves to connect gage. Pressure can then be removed to check or re-zero the gage.

A-310B, same as A-310A but with 10 PSI rating

A-311, Shut Off Valve, brass, 1/8" NPT to 1/8" NPT

- A-312, Shut Off Valve, brass, ¹/₄" NPT to ¹/₄" metal tubing
- A-355, Porting Valve, acrylic plastic, %" NPT inserts. Used for convenient indication of pressure at two points with a single gage
- A-365, Dual Porting Valve, acrylic plastic, %" NPT fittings. For monitoring three pressures, two at a time, with one gage

Series PS Pressure Snubber

Designed to protect pressure instrumentation by dampening surges and pulsations and assuring steady average pressure readings **P\$114**, Brass 1/8" NPT **P\$214**, Stainless Steel 1/8" NPT

A-602, Air Filter Kit. Accessory package includes two pressure tips with integral compression fittings, two 5 ft. lengths of 1/4" aluminum tubing and two 1/8" NPT to 1/4" tubing compression fittings

A-603, "T" Kit. Accessory package for using a pressure switch in conjunction with an air filter kit equipped Magnehelic[®]. Includes two 1/8[°] NPT to 1/4[°] tubing compression fittings and two compression tees.

A-604, "T" Kit. Accessory package for using a pressure switch in conjunction with a Magnehelic[®]. Includes two plastic tubing connector tees and two plastic tubing to 1/8" NPT adapters.

A-605, Air Filter Gage Accessory package. Adapts any standard Magnehelic[®] for use as an air filter gage. Includes aluminum surface mounting bracket with screws, two 5 ft. (1.5 m) lengths of 1/4[°] aluminum tubing, two static pressure tips and two molded plastic vent valves, integral compression fittings on both tips and valves.

Miscellaneous Accessories

Filters

Gage Tubing

Magnehelic. Accessories

In Line Filters

A-331, 1/8" NPT Filter Vent Plug, nylon and sintered metal

A-391, Line Filter, ¼" female NPT x ¼" male NPT **A-392**, Line Filter, ¼" female NPT x ¼" male NPT

F222, Liquid/Particle Filter for compressed air. Removes dirt, water and oil. 22 scfm maximum flow, ¹/₂ female NPT inlet and outlet 1201-2. Replacement Filter Element for F222 filter, package of 3

F451, Liquid/Particle Filter for compressed air. Removes dirt, water and oil. 45 scfm maximum flow, ½° female NPT inlet and outlet

1201-3, Replacement Filter Element for F451 filter, package of 3

Clear Tubing for Inspection

Clear plastic tubing is easily inspected and is therefore best for test applications where a possibility of fluid entering the tubing exists.

- A-220, Flexible Vinyl Tubing, Clear $\%^{"}_{6}$ l.D. x $\%^{"}_{6}$ 0.D., lengths to 500 ft, 45 psi maximum pressure @ 73°F
- A-221, Flexible Vinyl Tubing, Clear %" I.D. x %" 0.D., lengths to 500 ft, 40 psi maximum pressure @ 165°F
- A-222, Flexible Vinyl Tubing, Clear .240" I.D. x .375" O.D., lengths to 500 ft, 35 psi maximum pressure @ 73°F

Rubber Tubing for Portable Work

Rubber tubing has less tendency to kink in storage and occupies less space, thus is best for portable work.

A-201, Rubber Tubing, 3/16" I.D., 9 ft length

A-202, Rubber Tubing, 3/6" I.D. length to 50 ft

Metal Tubing for Permanent Installation

Metal tubing is the most durable and is recommended for using in permanent installations.

A-210, Aluminum Tubing, 1/4" O.D., 5 ft length, 500 psi maximum pressure 200°F

A-211, Aluminum Tubing, ¼" O. D., lengths to 50 ft, 500 psi maximum pressure @ 200°F

Air Source for Bubbler Level Systems

A-394, Electric Air Pump. Provides convenient source of purge air in bubbler type liquid level systems. Dual diaphragm design allows operation of two systems simultaneously.

Aspirator Bulb for Quick Leak Checks

A-350, Aspirator Bulb. Used as pressure source in calibration and leakage tests.

Calibration Pump with Precise Adjustment

A-396A, Calibration pump. Serves as pressure source to calibrate gages and transmitters or to set pressure switches. Use with manometer or other pressure standard. Includes volume adjuster enabling fine pressure control and bleed valve. Generates pressures from a fraction of an inch w.c. to 72 psig (5 bar). Includes barbed fitting, tee connector and three 36" lengths of vinyl tubing.

Related Products

Series A-304 Duct Connector

The Series A-304 Duct Connector allows for easy and fast connection of sensing tubes to ducting for static pressure reading to be taken. The low profile plastic connector is supplied complete with two screws and extension piece (80 mm long) for use with lagged or insulated ducts. The A-304 is suitable for use with 5 mm ID, PVC tubing.

STOCKED MODEL

Series A-304 Duct Connector

Model A-720 Strap Wrench

The A-720 offers the user a versatile tool to grip, undo & tighten a wide variety of awkwardly shaped and sized objects.

The A-720 also makes the job of fitting Adjustable Signal Flags (ASF) to Magnehelic[®] Gages much easier by simply following the instruction included with each cover supplied.

STOCKED MODEL

Model A-720 Strap Wrench

Clean Room Pressure Sensors

The Stainless Steel room sensors are a static pressure pick-up point for use in clean rooms and other contained environment areas. The all stainless steel construction offers a low profile, cleanable and neat answer to tubing termination within these areas. Three models exist to cover all needs: The A-414 has a push-on termination suitable for 5mm flexible plastic tubing, the A-415 has a compression fitting, for use with 6mm OD SS tubing and the A-416 is designed for fixing to standard partitions so that no fittings are shown on the clean room side; this model is clamped in place across the partition. The A-414 and A-415 are supplied with stainless steel mounting screws.

APPLICATIONS

Pressure connection point for fan proving applications, filter monitoring, damper control for the HVAC, dust control and fume extraction industries.

SPECIFICATIONS

- Plastic Duct Connector.
- Plastic Extension Piece 3.15" long x 0.39" dia.(80 mm long x 10 mm dia).

FEATURES

- Easy Installation & Low Cost
- Plastic Construction.
- Supplied with Mounting Screws and Extension Probe

FEATURES

- Reinforced plastic handle provides extra leverage.
- Rubber strap reinforced with 38 cords of high tensile polycarbon to give a breaking strength in excess of 2,000 lbs.
- Strap will grip objects from 20mm to 160mm diameter.
- Low cost, rugged and simple to use.
- Handy multi-purpose tool.

Magnehelic. Accessori

• All Stainless Steel construction

- (satin finish). • Supplied with SS mounting screws
- (not A-416).

APPLICATIONS

These units offer a convenient, cost effective and neat way to terminate the static pressure connection points in Clean Rooms and Controlled Environments.

STOCKED MODELS in bold **A-414** A-415 A-416

10

Magnehelic[®] with 4-20 mA **Transmitter** Output

/2 [12.70]

-1/8 FEMALE NPT LOW PRESSURE CONNECTION 2-1/2 [63.50]-

Do you need a Magnehelic[®] gage and a transmitter? The Dwyer Series 605 offers both in one product! The 605 Magnehelic[®] Indicating Transmitter provides for both visual monitoring and electronic control of very low differential pressure. The Series 605 is ideal for control applications in building HVAC systems where local indication is desired during routine maintenance checks or necessary when trouble shooting the system. The easily read dial gage is complimented by the two-wire, 4-20 mA control signal utilizing the time-proven Dwyer Magnehelic[®] gage mechanical design and Series 600 transmitter technology. The compact package reduces needed panel space by eliminating an additional transmitter plus reduces installation time.

1-1/8

[28.58]

11/16

[17.46]

FOR PANEL MOUNTING

The Transmitter can be surface mounted or flush mounted in a 4-13/16 (122 mm) diameter panel hole. Hardware is included for either option. Duplicate 1/8" female NPT pressure connections on side and back ease installation. Based on its unique combination of price and performance, the Series 605 transmitter is ideal for use in commerical and industrial energy management systems. Typical applications include control of variable speed fans and blowers as well as the positioning of system dampers. Continuous data on air velocities in ducts and air filter pressure drops can be fed to the controlling computer.

SPECIFICATIONS GAGE SPECIFICATIONS

5/8 [15.88]

PANEL MAX 3/16

[4.76]

Service: Air and non-combustible, compatible gases. Wetted Materials: Consult Factory. Accuracy: See chart. Stability: ±1% F.S./yr. Pressure Limits: See chart. Temperature Limits: 20 to 120°F (-6.67 to 48.9°C). Process Connections: 1/8" female NPT. Size: 4" (101.6 mm) dial face, 5" (127 mm) 0.D. x 2-11/16" (68.3 mm). Weight: 1 lb, 12.6 oz (811 g). Agency Approvals: CE.

Ø4 [101.60]

FACE

5-1/2 [139.70]

O.D. MOUNTING RING

TRANSMITTER SPECIFICATIONS

Accuracy: See chart (includes linearity, hysteresis, repeatability). Temperature Limits: 20 to 120°F (-6.67 to 48.9°C). Compensated Temperature Range: 32 to 120°F (0 to 48.9°C). Thermal Effect: ±0.025% F.S./°F (0.045% F.S./°C). Power Requirements: 10-35 VDC (2 wire). Output Signal: 4 to 20 mA. Zero and Span Adjustments: Protected potentiometers. Loop Resistance: DC; 0-1250 ohms maximum. Current Consumption: DC; 38 mA maximum. Electrical Connections: Screw terminal block. Mounting Orientation: Diaphragm in vertical position. Consult factory for other position orientations.

STOCKED MODELS in bold

Model Number	Range in w.c.	Maxim <mark>um</mark> Pressure	Electrical Accuracy +/-%	Mechanical Accuracy +/-%	Model Number	Range in w.c.	Maximum Pressure	Electrical Accuracy +/-%	Mechanical Accuracy +/-%
605-00N	.05-020	25 psi (1.7 bar)	2	4	605-20	0-20.0	20 psi (1.4 bar)	0.5	2
605-11	.25-025	25 psi (1.7 bar)	2	3	605-30	0-30	20 psi (1.4 bar)	0.5	2
605-0	050	25 psi (1.7 bar)	2	2	605-50	0-50	20 psi (1.4 bar)	0.5	2
605-1	0-1.0	25 psi (1.7 bar)	2	2		Range in Pa			
605-2	0-2.0	10 in. w.c. (2.5 kPa)	0.5	2	605-60Pa	0-60	25 psi (1.7 bar)	2	4
605-3	0-3.0	5 psi (34.5 kPa)	0.5	2	605-125Pa	0-125	25 psi (1.7 bar)	2	2
605-6	0-6.0	5 psi (34.5 kPa)	0.5	2	605-250Pa	0-250	25 psi (1.7 bar)	2	2
605-10	0-10	5 psi (34.5 kPa)	0.5	2	605-500Pa	0-500	10 in. w.c. (2.5 kPa)	0.5	2

Pitot Tubes fo<mark>r Sensing Air Velocity</mark>

Use with the Magnehelic[®] in Air Flow Applications

Ideal for use with our precision manometers and air velocity gages, Dwyer Pitot Tubes are constructed from corrosion resistant stainless steel for a lifetime of service. ASME design meets AMCA and ASHRAE specifications for maximum accuracy over a wide variety of flow conditions. No correction factors required as ASHRAE tip design yields a calibration factor of 1. ASHRAE design needs no calibration! Permanent, stamped insertion depth graduations on sides of 160 series facilitate accurate positioning. Static pressure port is parallel to sensing tube allowing quick, easy alignment of tube with air flow. Low sensitivity to misalignment gives accurate reading even when tube is misaligned up to 15 degrees. Various standard sizes are available for use in ducts as small as 4″ dia. or as large as 36 ft. dia. A universal model fits user supplied 3/4″ schedule 40 (standard) pipe in any length. Several convenient mounting options are available for permanent installations.

- No calibration needed.
- Precisely located, burr-free static pressure holes.
- Hemispherical tip design, best for accuracy if imperfectly aligned and nearly impossible to damage.
- Long lasting 304 stainless steel construction.
- Silver soldered connections for leak-proof operation.
- ASME design meets AMCA and ASHRAE specifications.
- Coefficient of "1."
- 5/16" models rated to 1500°F.
- Extended static connection helps guide tip within recommended 15° of air flow direction.
- Inch graduations on sides of 160 series to quickly determine exact insertion depth.
- Dwyer Air Velocity Calculator, direct reading flow charts and instructions included.
- Use 1/8" models in ducts as small as 4", 5/16" models in ducts 10" or larger.
- Optional mounting gland or split flange make permanent installation fast and simple.

STOCKED MODELS in bold

S	Standard % " Dia .	Longer	Length w/ Stiffener
Model Number	Insertion Length	Model Number	Insertion Length
160-8	8"	160-96	96"
160-12	12"	160-120	120"
160-18	18"	160-168	168"
160-24	24"	160-216	216"
160-36	36"	Poc	ket Size ¼" Dia.
160-48	48"	166-6	6"
160-60	60"	166-12	12"
Unive	rsal Model for ¾" Pipe	167-6	6"
160-U	*	167-12	12"

"Universal model for permanent installation and connection to metal tubing. Make any length Pito tube with %" schedule 40 pipe, %" to %" reducing bushing and %" metal tubing. Accessories & Options

A-156 Flange Mounting Plate A-158 Split Flange A-159 Mounting Gland A-397 Step Drill

Compression Fitting mounting option for 166/167 Series. Add -CF suffix (166-6-CF).

ACCESSORIES

No. A-158 Split Flange Mounting can be added to any Dwyer No. 160 Standard Pitot Tube. Cadmium plated steel. Gasket is pattern for mounting holes. Secure flange loosely to tube, adjust tube depth and tighten screws. Gasket of 1/16" Neoprene fits tightly around tube and against duct for leak-proof seal. Nuts, washers included.

No. A-159 Mounting Gland — Versatile

adapter slips on any Series 160, 5/16" standard Pitot tube made after Dec. 1990. Two-

part stainless steel fitting slides over tube

and provides permanent, secure mounting. Where duct interior is accessible, use the

washers and jam nut supplied. For blind ap-

plications or in thicker materials, use model A-156 flange mounting plate. Once tube is

adjusted to proper depth and angle, tighten

smaller hex bushing to lock position.

Graphite bushing inside assures leak-proof

seal even at higher temperatures. Teflon®

bushing also available. NOTE: For full inser-

tion with this fitting, order next longer Pitot

No. A-397 Step Drill. For fast, convenient in-

stallation of Pitot tubes in sheet metal ducts. No center punch needed; automatic de-burring. Drills six sizes from 3/16" - 1/2" in 1/16"

A-158 Split Flange Mounting

A-159 Duct Mounting Gland

A-156 Flange Mounting Plate

A-159 Mounting Gland is used for both duct mounting and flange mounting. To flange mount, the A-159 must be used with the A-156 flange mounting plate.

increments.

tube.

Capsuhelic[®] Differential Pressure Gage

Ideal for High Pressure Applications with Internal Pressure Rating to 500 psig

Capsuhelic[®] Pressure Gage has a large, easy-to-read 4" (102 mm) dial.

Do you need to monitor low differential pressures but have potentially high system static pressures. If the answer is yes, then the Capsuhelic® is the perfect solution!

Using the basic design of Dwyer's time-proven Magnehelic® gage, the Capsuhelic® contains a simple, frictionless movement that permits full scale readings as low as 0.5 inch water column. The pressure being measured is held within a capsule which is an integral part of the gage. This containment of the pressure permits the use of the gage on system pressures of up to 500 psig, even when differentials to be read are less than 0.1 inch w.c.

The Capsuhelic® gage is designed to give fast, accurate indication of differential pressures. The gage may be used as a readout device when measuring flowing fluids, pressure drop across filters, liquid levels in storage tanks and many other applications involving pressure, vacuum or differential pressure.

The diaphragm-actuated Capsuhelic[®] gage requires no filling liquid which might limit its outdoor applications. Zero and range adjustments are made from outside the gage, and there is no need to disassemble the gage in normal service.

NOTE: May be used with Hydrogen where pressures are less than 35psi.

MOUNTING

Capsuhelic[®] gages may be flush mounted in a panel or surface mounted. Hardware is included for either. For flush mounting, a 4-13/16[°] diameter cutout in panel is required. Where high shock or vibration are problems, order optional A-496 Heavy Duty flush mount bracket. Optional A-610 kit provides simple means of attaching gage to 1-1/4[°]-2[°] horizontal or vertical pipe. Installation is same as Magnehelic[®] gage shown on page 1. All standard models are calibrated for horizontal or inclined mounting on special order.

Flush mounted in panel.

Back view shows flush mounting adapters.

Dimensions, Series 4000 Capsuhelic® Pressure Gages.

SPECIFICATIONS

Service: Aluminum Case: Air and compatible gases and oil based liquids. Brass Case: Air and compatible gases and water based liquids.

Wetted Materials: Consult factory. Housing: Die cast aluminum with impregnated hard coating, standard. Optional forged brass housing is required for water or water based fluids. Special material diaphragms available, contact factory.

Accuracy: ±3% of full scale at 70°F (21.1°C). (±2% on 4000S models, ±4% on 4200, 4210, 4215, 4220, 4300, 4400, and 4500). Pressure Limits: -20″ Hg to 500 psig. (-0.677 bar to 34.4 bar). **Temperature Limits:** 20 to 200°F (-6.67 to 93.3°C).

Size: 4" (101.6 mm) diameter dial face.

Mounting Orientation: Diaphragm in vertical position. Consult factory for other position orientations.

Process Connections: 1/4" female NPT high and low pressure taps, duplicated - one pair top for air and gas, and one pair bottom for liquids. Weight: 3 lb, 3 oz (1.45 kg) aluminum case; 7 lb, 13 oz (3.54 kg) brass case.

Standard Accessories: Two 1/4" NPT plugs for duplicate pressure taps, four flush mounting adapters with screws and four surface mounting screws.

OPTIONS AND ACCESSORIES

Adjustable Signal Flag — Integral with plastic gage cover; has external reset screw. May be ordered factory installed on gage or separately for field installation. Specify ASF suffix after model number.

A-314 Bleed Fitting — For easier, safer purging of trapped air when using gage with liquids. Also useful for draining condensate when installed in lower ports. To open, simply loosen hex nut. Solid brass.

Forged Brass Case — For applications involving water or water based liquids. To order, add suffix "B" after model number. Example: 4205B.

Transparent Scale Overlays — Available in bright red, green or yellow to accent critical pressure zones. Specify which color and portion of scale to be covered with each.

A-471 Portable Kit — Includes plastic case, mounting bracket, A-309 3-way manifold valve, (2) A-230 high pressure hoses and all necessary fittings. Assembly required. Gage not included.

Straightforward Design Assures Maintenance-free Performance

Top low pressure connection (*for Air or Gas*) connects to chamber in back of diaphragm. High pressure air or gas port (cut away; not shown) connects with chamber in front of diaphragm through passageways in case.

Precision made case is offered in two materials. Standard is die cast aluminum coated inside for resistance to most oils and similar fluids. Optional forged brass case is recommended when using water or water based liquids. One case size for all pressure ranges can be either surface or flush mounted.

Silicone rubber diaphragm with integrally molded Oring is sealed between the case and backplate. Diaphragm motion is restricted to prevent damage due to over-pressure.

Diaphragm support plate of stainless steel minimizes position or attitude sensitivity.

Calibrated range spring is a flat leaf of nickel plated spring steel. Small amplitude of motion assures consistency and long life. It reacts to pressure on diaphragm. Live length factory adjusted for calibration.

Bottom high pressure connection (for Liquids) connects to chamber in front of diaphragm. Low pressure liquid connection (not visible) connects with chamber in back of diaphragm through passageways in case. Range spring calibration is set by custom camlock. Rate adjust and rate adjust lock are coaxial and are factory set and sealed.

Bezel provides flange for flush mounting in panel.

O-ring seal for cover assures dust tight integrity of case.

Clear plastic front cover is highly resistant to breakage. Provides undistorted viewing of pointer and scale.

Precision scale, screen printed on aluminum, is accurate and easy to read.

Samarium cobalt magnet mounted at end of range spring rotates helix without mechanical linkages.

"Wishbone" assembly provides mounting for helix, helix bearings and pointer shaft.

Thin wall magnetic "window" is well braced and of minimum area for maximum pressure capability.

Jeweled bearings for helix are shock resistant mounted. They provide virtually friction-free rotation for helix. Rotation is damped with high viscosity silicone fluid.

Helix is precision milled from an alloy of high magnetic permeability, mounted in jeweled bearings, and rotates to align with magnetic field of magnet and transmit pressure indication to pointer.

Zero adjustment screw is conveniently located in plastic cover, accessible without removing cover. "O" ring seal provides dust seal.

Patent Nos. 4,011,759 4,030,365

SERIES 4000 CAPSUHELIC° — MODELS AND RANGES

Scales reading directly in flow, heights, etc., are also available.

STOCKED MODELS in bold

Model Number	Range, Inches of Water	Model Number	Range Zero Center Inches of Water	Model Number	Range MM of Water	Model Number	Range, CM of Water	Model Number	Range, Pascals	
*4000-0 *4001 *4002 *4003 *4004	050 0-1.0 0-2.0 0-3.0 0-4.0	*4302 *4304 4310 4320 4330	1-0-1 2-0-2 5-0-5 10-0-10 15-0-15	*4000-25MM *4000-50MM 4000-80MM 4000-100MM	0-25 0-50 0-80 0-100	4000-15CM 4000-20CM 4000-25CM 4000-40CM 4000-50CM	0-15 0-20 0-25 0-40 0-50	*4000-125PA *4000-250PA *4000-500PA 4000-750PA	0-125 0-250 0-500 0-750	
*4005 4006	0-5.0 0-6.0	Model	Range	1		4000-80CM 4000-100CM	0-80 0-100	Zero	Center Ranges	
4008 4010	0-0.0 0-8.0 0-10	Number 4201	PSI 0-1	Special	Burnooo	4000-150CM 4000-200CM	0-150 0-200	*4300-500PA	250-0-250	
4015 4020	0-15 0-20	4202 4203	0-2 0-3	Special Purpose Ranges		4000-250CM 4000-300CM	0-250 0-300	Model Number	Range, Kilopascals	
4025 4030	0-25 0-30	4204 4205	0-4 0-5	Scale N		Zero Cen	ter Ranges	4000-1KPA	0-1	
4040 4050 4060	0-40 0-50 0-60	4210 4215 4220	0-10 0-15 0-20	Square Specify Scale N	Range	*4300-4CM 4300-10CM	2-0-2 5-0-5	4000-1.5KPA 4000-2KPA 4000-3KPA	0-1.5 0-2 0-3	
4080 4100 4150 4200	0-80 0-100 0-150 0-200	†4230S †4240S †4260S †4280S	0-30 0-40 0-60 0-80	Scale N Blank S Specify	cale	4300-30CM	15-0-15	4000-4KPA 4000-5KPA 4000-8KPA 4000-10KPA	0-4 0-5 0-8 0-10	
4300 4400 4500	0-300 0-400 0-500	† 42100S †42200S †42300S	0-100 0-200 0-300					4000-15KPA 4000-20KPA 4000-25KPA	0-15 0-20 0-25	
Model Number	Range Feet of Water		Iush Mounting B	racket	Options			4000-30KPA 0-30 Zero Center Ranges		
4616B 4635B	0-16 0-35	A-314 Bleed A-370 Mour	nting Bracket		-ASF (<mark>Adjus</mark> -B (Brass Ca			4300-1KPA 4300-3KPA	.5-05 <mark>1.5</mark> -0-1.5	
Available with brass case only A-471 Portable Kit A-496 Flush Mount Bra A-610 Pipe Mount Kit					Scale Overlays - Red, Green, Mirrored or combination. Specify Locations					

*These ranges available for vertical scale position only.
†These ranges use Spiralhelic® movement.

Digihelic[®] **Differential Pressure Controller**

Pressure, Velocity & Volumetric Flow Operation

The Dwyer Series DH Digihelic® Differential Pressure Controller is the ideal instrument for pressure, velocity and flow applications, achieving a 0.5% full scale accuracy on ranges from 5 to 100 in. w.c.

The Digihelic® provides a 4-20 mA process output, 2 SPDT relays with adjustable dead bands, and selection of pressure, velocity or flow operation. Units operate from either 120/220 VAC or 24 VDC.

Programming is simplified using a menu key, and includes: security level; set point or set point and alarm operation; auto or manual alarm reset; English or Metric engineering units; K-factor adjustment for use with various Pitot tubes and flow sensors; and circular or rectangular duct size for volumetric flow operation.

FEATURES

- Field Programmable for Pressure, Velocity or Flow Operation
- 4-20 mA Process Output
- 2 SPDT Relays with Selectable Dead Bands
- Universal Power Supply of 120/220 VAC & 24 VDC
- Retrievable Peak and Valley Readings
- 0.5% Full Scale Accuracy Sensor
- Modbus[®] Communications
- Compact, 1/8 DIN Housing with NEMA 4X (IP66) Front Face

000.5 1-15/16 3-19/32 (49.21) (91.28) 3-25/32 (96.04) 4-1/2 1 - 3/4(114.30)(44.45) 1/2 (12.70)4 - 1/2(114.30)

SPECIFICATIONS

Service: Air and non-combustible, compatible gases. Wetted Materials: Consult factory. Housing Material: ABS plastic, UL approved 94-V-0. Accuracy: ±0.5% at 77°F (25°C) including hysteresis and repeatability. **Stability:** $< \pm 1\%$ per year. Pressure Limits: 3 X range. Temperature Limits: 32 to 140°F (0 to 60°C) **Compensated Temperature Limits:** 32 to 140°F (0 to 60°C). Thermal Effects: 0.020%/°F (0.036/°C) from 77°F (25°C). **Power Requirements:** High Voltage Power = 100 to 240 VAC, 50 to 400 Hz or 132 to 240 VDC. Low Voltage Power = 24 VDC ±20%. **Power Consumption:** Low Voltage Power = 24 VDC - 130 mA max. High Voltage Power = 100 to 240 VAC, 132 to 240 VDC - 7VA max. Output Signal: 4-20 mA DC into 900 ohms max. Zero & Span Adjustments: Accessible via menus. Response Time: 250 ms. Display: 4 digit LCD 0.4" height LED indicators for set point and alarm status. Electrical Connections: Screw terminals. Process Connections: Compression fitting for use with 1/8" ID X 1/4" OD tubing (3.175 mm ID x 6.35 mm OD). Enclosure Rating: Face designed to meet NEMA 4X (IP66). Mounting Orientation: Mount unit in horizontal plane. Size: 1/8 DIN. Panel Cutout: 1.772 x 3.620 in (45 x 92 mm). Weight: 14.4 oz. (408 g). Serial Communications: Modbus® RTU, RS485, 9600 Baud.

SWITCH SPECIFICATIONS

Switch Type: 2 SPDT relays. Electrical Rating: 8 Amps at 240 VAC resistive. Set Point Adjustment: Adjustable via keypad on face.

STOCKED MODELS in bold

Available Pressure Engineering Units														
Model No.	in. wc	ft. wc	mm wc	cm wc	psi	in. Hg	mm Hg	mbar	Pa	kPa	hPa	oz. in.		
DH-006	5.000	.4167	127.0	12.70	.1806	.3678	9.342	12.45	1245	1.245	12.45	2.890		
DH-007	10.00	.8333	254.0	25.40	.3613	.7356	18.68	24.91	2491	2.491	24.91	5.780		
DH-008	25.00	2.083	635.0	63.50	.9032	1.839	46.71	62.27	6227	6.227	62.27	14.45		
DH-009	50.00	4.167	1270	127.0	1.806	3.678	93.42	124.5		12.45	124.5	28.90		
DH-010	100.00	8.333	2540	254.0	3.613	7.356	186.8	249.1		24.91	249.1	57.80		

Bi-Directional Ranges also available: DH-015 Range: 2.5 - 0 - 2.5" w.c.

DH-016 Range: 5 - 0 - 5" w.c.

Note: Velocity and volumetric flow only available on models DH-006 & DH-007.

Pressure Conversion Chart

1 2 0.072 0.016 0.005 .4964 49.64 0.026 0.028 92.89 92.99 </th <th>in/H₂O</th> <th>P.S.I.</th> <th>in/Hg</th> <th>mm/H₂O</th> <th>mm/Hg</th> <th>kg/cm²</th> <th>bar</th> <th>mbar</th> <th>Ра</th> <th>kPa</th>	in/H ₂ O	P.S.I.	in/Hg	mm/H ₂ O	mm/Hg	kg/cm ²	bar	mbar	Ра	kPa
A 0.014 0.028 10.01 0.9028 0.9058										.0248
6 0.2016 0.4480 0.502 0.1015 1.480 <th1< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.0496 .0993</td></th1<>										.0496 .0993
1.0 0.0361 0.705 2.6.72 2.4.89 2.4.89 2.4.8.9 <th2.4.8< th=""> <th2.4.8< th=""></th2.4.8<></th2.4.8<>	.6	.0216	.0440	15.20	1.118	.0015	.0015	1.489		.1489
2 0.722 1.470 6.01 0.78 0.05 0.060 4.978 4.97.8 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>.1992</td></t<>										.1992
4 .1444 .2960 19.66 9.965 9.9	2	.0722	.1470	50.81	3.736	.0051	.0050	4.978	497.8	.4978
5 1004 3673 1270 9.383 0.127 0.124 12.44 12.44 12.44 12.44 12.44 12.44 12.44 12.48 14.48 14.48 7 2.266 5.143 17.75 15.072 0.078 0.078 0.074 17.42 17.43										.7476 .9956
7 2526 5.443 17.7.8 10.726 0.716 0.716 19.90 19.90 19.90 9 3.248 6.681 222.68 16.806 0.0224 0.224 22.39 2.238 2.239 2.238 </td <td></td> <td></td> <td>.3673</td> <td>127.0</td> <td></td> <td>.0127</td> <td>.0124</td> <td></td> <td></td> <td>1.244</td>			.3673	127.0		.0127	.0124			1.244
8 28267 6.578 20.2 1.940 0.224 0.224 22.39 22.33 22.33 22.33 22.33 23.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 344 34.33 34.34 34.33 34.34 34.33 34.34 34.33 34.34 34.34 34.34 34.34 34.34 34.34 34.34 34.34 34.34 34.34 34.34 34.34 34.34 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1.493</td>										1.493
10 .3609 .7.44 25.40 16.76 .0274 0.244 2.438 2.488 2.488 2.488 2.488 2.488 2.33 2.33 2.33 3.33 13 .4692 .9653 .3023 .332 .522 .536 .541 .547 .447 .447 .447 .447		.2887	.5878	203.2	14.940	.0203	.0199	19.90		1.990
11 3970 8083 27.4 20.544 0.274 27.37 27.3										2.239
13 .4662 .9583 33.0.2 24.20 .0335 .0344 24.35 24.34 34.44 34.44 15 .5744 1.102 38.10. 28.016 .0351 .0373 .37.33 .3733 .4471 .4477 .4477 .4477 .4477 .4477 .4477 .4477 .4477 .4477 .4477 .4477 .4476 .4471 .4479 .4471 .4479 .4471 .4479 .4471 .4471 .4471 .4471 .4471 .4477						.0279				2.737
16 .5744 1.102 381.0 28.016 .0381 0373 37.33 37										3.235
16 5.774 1.176 4064 29.879 .0406 .0398 3.981 3.981 3.981 17 6.56 1.284 431.8 3.752 0.431 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.231 4.232 4.231 4.232 4.231 4.232 4.235 1.235 4.475 4.477 4.472 4.472 4.472 4.472 4.472 4.271 4.277 4.477										3.484
18 6469 1.322 457.2 33.616 0.447 0.448 44.79 44.79 44.79 44.79 44.79 10 77218 1.470 508.0 53.352 .065.0 50.256 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.26 52.27 53.73 52.27 53.73 52.27 53.72 57.27 53.72 57.27 53.73 52.27 53.73 53.73 53.73 53.73 53.72 57.27 53.73 53.73 53.73 53.73 53.73 53.72 57.27 57.71 57.71 57.71 57.71 77.71<										3.981
19 6657 1.396 442.6 35.444 .0462 .0473 47.28 4728 4728 4728 4778 477 4767 746 28 1010 2.056 7108 522 56.04 0710 772 715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715 7715										4.231 4 479
21 77579 1.543 532.4 39.22 .05633 0.623 52.26 52.26 52.26 23 3301 1.690 584.2 42.96 .0568 0.672 57.23 5721 5721 5721 5731 5721 5771 5763 5719 7717 7715	19	.6857	1.396	482.6	35.484	.0482	.0473	47.28	4728	4.728
223 7340 1.1616 568.8 41.09 0.565.8 0.647 6.17.4 6.47.4 5.47.4 5.47.4 5.47.3 5.27.2 5.27.3 7.46.7										4.977
24 9802 1.837 630. 46.69 0.0634 0.0627 6.37.2 637.2 746.7 746.7 746.7 746.7 746.7 746.7 746.7 746.7 746.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.3 796.8 895.6 895.6 895.6 895.6 895.6 895.6 895.6 895.6 895.6 895.6 895.6 995.6 995.6 995.6 995.6 9	22	.7940	1.616	558.8	41.09	.0558	.0547	54.74	5474	5.474
256 9.9023 1.837 6.85.0 4.66.0 .06620 6.022 6.221 6.221 6.221 28 1.010 2.056 7.018 5.226 0.070 6.747 6.747 28 1.010 2.056 7.1018 5.226 0.070 0.766 6.964 6.964 29 1.047 2.132 7.88.8 5.418 0.776 0.772 7.715 7.716 7.768 7.708 7.708 7.708 7.708 7.708 7.708 7.708 7.708 7.708 7.708 7.708 7.708 7.708										5.723 5.972
27 .9745 1.984 685.8 50.43 .0685 .0672 67.19 67.19 67.29 28 1.047 2.132 736.8 54.18 .0776 .0772 72.19 72.19 72.19 72.19 72.19 72.19 72.19 72.16 77.15 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.16 .77.17 .77.15 .77.16 .77.17 .77.16 .77.17 .77.16 .77.17	25	.9023	1.837	635.0	46.69	.0634	.0622	62.21	6221	6.221
28 1.010 2.056 710.8 52.26 0.0710 0.0966 69.64 696.44 69.64 30 1.083 2.205 762.2 56.04 0.0761 0.772 77.15 77.15 77.15 77.15 77.15 77.15 77.15 77.15 77.17 77.15 77.15 77.17 77.15 77.15 77.17 77.15 77.17 77.15 77.11 77.17 77.15 77.11 77.17 77.15 77.11 77.13 77.13 28.21 82.12 92.0 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00 92.00<										6.470 6.719
90 1.083 2.205 782.5 56.04 .0761 .0772 77.15 77.16 77.17 77.16 77.16 77.17 77.17 77.17 77.17 77.17 77.17 77.17 77.17 77	28	1.010	2.056	710.8	52.26	.0710	.0696	69.64	6964	6.964
31 1.119 2.278 787.5 57.91 .0787 .0772 77.16 77.17 77.17 77.17 77.17 77.13 77.14 77.14 77.14 77.14 77.14 77.14 77.14 77.14 77.14 77.16 77.14 77.16 77.14 77.16 77.17 77.13 77.17 77.13 77.17 77.17 77.17 77.17 77										7.219
33 1.191 2.425 863.5 6.5.36 0.087 0.021 82.12 82.14 82.14 82.14 12.12 12.101 1107 107.0 107.0 107.0 107.0 107.0 107.0 107.0 107.0 107.1 11.12 11.12 1	31	1.119	2.278	787.5	57.91	.0787	.0772	77.15	7715	7.715
34 1.227 2.498 86.35 63.49 .0962 .0964 84.60 84.60 8.40 8.40 8.70 9.70										7.963
96 1.299 2.2465 914.2 67.22 0913 0.086 89.56 8956 8956 37 1.337 2.791 984.9 70.95 .0064 .0044 94.53 9453 9.703 38 1.371 2.791 964.9 77.955 .0064 .0044 94.53 9453 9.453 40 1.444 2.840 1016 74.72 .1015 .0996 99.56 9956 956 41 1.583 3.103 1042 76.59 .1040 .102.0 102.01	34	1.227	2.498	863.5	63.49	.0862	.0846	84.60	8460	8.460
37 1.355 2.718 99.08 99.08 0.928 0.920 92.04 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 102.01 112.01 112.01 112.01 112.01 112.01 112.01 112.01 112.01 112.01 112.01 112.01 112.01 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.708</td></t<>										8.708
39 1.408 2.876 9909 72.86 .0990 .0971 97.08 97027 97027										9.204
40 1.444 2.940 1016 74.72 .1015 0.096 95.65 95.65 41 1.460 3.013 1042 76.59 .1046 1045 1045 1045 43 1.552 3.160 1092 80.31 .1096 .1070 107.0 10701 107.0 45 1.624 3.306 1143 84.04 .1142 .1120 1120 1144 114.45 114.44 46 1.660 3.378 1194 87.76 .1192 1119 112.9 1219										9.453
42 1.516 3.086 1067 78.45 1.066 1045 10452 10.452 43 1.552 3.160 1092 80.31 1.091 1070 1070 10.701 10.701 44 1.588 3.233 1118 82.18 .1116 .1095 109.5 109.5 45 1.624 3.306 1148 84.04 .1122 .1120 114.5 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.45 114.44 114.5 114.45 114.44 114.2 119.9 121.9										9.956
43 1522 3.160 1092 80.31 1091 1070 10701 10701 10.701 44 1.588 3.233 1118 82.18 .1116 .11142 1120 11197 11.20 46 1.660 3.378 1168 85.90 .1167 .1144 114.5 1144 47 1.660 3.378 1168 85.90 .1167 .1144 114.5 1144 48 1.722 3.526 1219 82.90 .1244 1219 1219 12.190 12.19 50 1.804 3.673 1270 93.35 .1268 .1244 124.4 1243 12.19 12.190 12.19 51 1.841 3.748 1372 0.08 .1370 .1343 13.44 129.4 129.4 129.4 129.4 129.4 12.41 12.83 51 1.854 1.443 144.8 148.8 148.3 13.93 3.33.93.33.33.33.33 13.9										
45 1.624 3.306 1143 84.04 .1142 .1120 1112.0 112.0										
46 1.680 3.378 1168 85.90 .1167 .1144 114.5 114.45 114.44 47 1.696 3.453 1194 87.76 .1192 .1169 116.9 <td></td>										
48 1.732 3.526 1219 99.63 1218 1194 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.44 119.43 112.43 112.44 112.44 112.44 112.44 112.43 112.43 112.44 112.44 12.43 12.44 13.43 13.4										
49 1788 3.600 1244 91.49 1243 1219 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>										
51 1.841 3.748 1296 95.27 1.294 12.94 129.4 12941 12.94 52 1.877 3.825 1321 97.13 .1320 .1294 129.4 12941 12.94 54 1.949 3.985 1372 100.8 .1370 .1344 134.4 13438 13.44 55 1.985 4.041 1397 102.7 .1395 130.9 13.99 13.99 13.934 13.83 56 2.021 4.115 1442 104.6 .1471 1443 144.3 145.7 14.5.8										
52 1.877 3.822 1321 97.13 1.320 .1294 12941 12941 12941 53 1.913 3.895 1346 98.99 .1345 .1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 1319 131.9 131.9 131.9 1328 1393 1483 1483 14463 14483 1443 1443 1443 1443 1443 1443 1443 1443 1443 1443 1453 1543 1543		1.804								
54 1.945 3.968 1372 100.8 .1370 .1344 134.4 134.88 13.44 55 1.985 4.041 1397 102.7 .1395 1369 136.9 13686 13.69 56 2.021 4.115 1422 104.6 .1421 1393 139.3 13934 13.93 57 2.057 4.188 1448 106.4 .1146 .1443 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 144.3 154.3										
55 1.985 4.041 1397 102.7 1398 1389 138.9 138.8 1383 13933 13934 14181 14188 14184 14184 14184 14184 14184 14185 14186 14684 14687 14688 14687 14681 14635 1453 1543 1543 1543 1543 1543 1543 1543 1543 1543 1543 1543 1543 1563 1556 1575 1558 1556 1575 1568 1565 1556										
57 2.057 4.188 1448 106.4 .1146 .1418 141.8 14122 14.18 58 2.093 4.261 1473 108.3 .1471 .1448 144.3 14431 14433 59 2.129 4.335 1498 110.2 .1522 .1493 149.3 14927 14.38 61 2.202 4.483 1550 113.9 .1548 151.8 151.8 151.8 151.8 151.8 151.3 1543 154.3										
58 2.093 4.261 1473 108.3 .1471 .1443 144.3 144.3 144.3 144.3 59 2.129 4.335 1498 110.2 .1497 .1468 146.8 14679 14.83 60 2.202 4.483 1550 113.9 .1522 1493 149.3 149.27 61 2.202 4.483 1550 115.8 .1573 .1543 154.3 15430 156.3 1569 156.8										
60 2.165 4.408 1524 112.0 .1522 .1493 149.3 14927 14.93 61 2.202 4.483 1550 113.9 .1548 1518 1523 1523 1523 15627 1568 1667										
61 2.202 4.483 1550 113.9 .1548 .1518 151.8 1563 <th1563< th=""> 1563 <</th1563<>										
63 2.274 4.630 1600 117.7 1599 .1568 156.8 156.79 15.68 64 2.310 4.703 1626 119.5 .1624 .1593 159.3 15927 15.93 65 2.346 4.776 1651 121.4 .1649 1618 161.8 118.7 116.7 116.87 166.7 166.7 150.7 166.7 167.7 165.9 166.8 166.8 166.8 166.8 166.8 166.8 166.8 166.8 166.8 166.7 167.7 17.9 17.9 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
64 2.310 4.703 1626 119.5 .1624 .1633 159.3 15927 15.93 65 2.346 4.776 1651 121.4 .1649 .1618 161.8 16175 16.18 67 2.418 4.923 1702 125.1 .1700 .1667 166.7 16672 16672 16672 68 2.444 4.996 1727 127.0 .1725 .1692 1691 1691 176										
66 2.382 4.850 1676 123.3 .1674 .1642 164.2 164	64	2.310	4.703	1626	119.5	.1624	.1593	159.3	15927	15.93
67 2.418 4.923 1702 125.1 1700 .1667 166.7 16672 16672 16672 16672 16672 16672 16672 16672 16672 1692 <th1692< th=""> <th1692< th=""> <th1692< th=""></th1692<></th1692<></th1692<>		2.346	4.776	1651		.1649	.1618	161.8	16175	
68 2.454 4.996 1727 1720 1725 1.692 169.2 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1 174.1	67	2.418	4.923	1702	125.1	.1700	.1667	166.7	16672	16.67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	68	2.454	4.996	1727			.1692	169.2	16920	16.92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	2.526	5.143	1778	130.7	.1776	.1742	174.2	17416	17.42
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	71	2.562	5.216	1803	132.6		.1766	176.6	17664	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.1852			18168	18.17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	74	2.671	5.438	1880	138.2		.1842	184.2	18416	18.42
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77	2.779	5.658	1956	143.8	.1954	.1916	191.6	19160	19.16
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.1966			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	80	2.887	5.878	2032	149.4	.2030	.1991	199.1	19905	19.90
83 2.996 6.100 2108 155.0 .2106 .2066 206.6 206.7 20.66 84 3.032 6.173 2134 156.9 .2131 .2091 209.1 20905 20.90 85 3.068 6.246 2159 158.8 .2157 .2115 211.5 211.5 211.5 211.5 211.5 211.5 211.5 211.5 211.5 211.5 211.5 211.5 211.5 211.6 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21401 214.0 21440 214.0 21440 214.0 21440 214.0 214.0 214.0 214.0 214.0 214.0 214.0 214.0							.2040			
85 3.068 6.246 2159 158.8 .2157 .2115 211.5 21153 21.15 86 3.104 6.320 2184 160.6 .2182 .2140 214.0 218.9 21.9 215.0 221.6 221.6 221.6 221.6 221.6 221.4 221.4 22.39 22.39 22.39 22.39 22.39 22.39 22.39 22.39 22.39 22.39 22.39 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 22.89 23.39 23.35 6.686 2317.1 18.9 23.14	83	2.996	6.100	2108	155.0	.2106	.2066	206.6	20657	20.66
$\begin{array}{cccccccccccccccccccccccccccccccccccc$										
88 3.176 6.466 2265 164.4 .2233 .2190 219.0 21898 21.90 89 3.212 6.450 2260 166.2 .2258 .2215 221.5 22146 22.39 90 3.248 6.613 2286 168.1 .2283 .2239 22.39 22.39 22.39 91 3.284 6.686 2311 199.9 .2090 .2264 226.4 22642 22.64 92 3.320 6.760 2336 171.8 .2334 .2289 223.9 223.9 23.9 23.9 23.14 231.4	86	3.104	6.320	2184	160.6	.2182	.2140	214.0	21401	21.40
89 3.212 6.450 2260 166.2 2258 .2215 221.5 2214 6.21 2239 2230 2239 2239 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230 2230 22314 231.4	88	3.176	6.466	2265	164.4	.2233	.2190	219.0	21898	21.90
91 3.284 6.686 2311 19.9 .2309 .2264 226.4 228.2 22.89 92 3.320 6.760 2336 171.8 .2334 .2289 228.9 228.9 228.9 228.9 22.89 22.89 22.89 231.4 231.3 23.14 231.3 23.14 231.4 236.4 236.4 236.4 236.9 238.9 238.9 238.9 238.9 238.9 238.9 238.9 238.9 238.9 238.9 24.38	89	3.212	6.450	2260	166.2	.2258	.2215	221.5	22146	
92 3.320 6.760 2336 171.8 .2334 .2289 228.9 22890 22.89 93 3.366 6.833 2362 173.7 .2359 .2314 231.4 231.9 23.14 94 3.392 6.906 2387 175.5 .2384 .2339 233.9 23387 23.39 95 3.429 6.981 2413 177.4 .2410 .2364 236.4 226.42 226.4 96 3.456 7.055 2438 179.3 .2436 .2389 238.9 23890 23.89 97 3.501 7.128 2464 181.2 .2416 .241.4 241.8 241.8 24.38 98 3.537 7.201 2499 183.0 .2486 .249 24.39 24.39 24.39 98 3.573 7.275 2514 184.9 .2512 .2464 246.5 24.63				2311					22642	
94 3.392 6.906 2387 175.5 .2384 .2339 233.9 233.7 23.39 95 3.429 6.981 2413 177.4 .2410 .2364 236.4 23642 23.64 96 3.456 7.055 2438 179.3 .2436 .2389 238.9 238.9 23.89 97 3.501 7.128 2464 181.2 .2416 .2414 241.8 241.8 24.14 98 3.537 7.201 2489 183.0 .2486 .2439 243.9 24387 24.36 99 3.573 7.275 2514 184.9 .2512 .2464 246.4 2463 24.63	92	3.320	6.760	2336	171.8	.2334	.2289	228.9	22890	22.89
95 3.429 6.981 2413 177.4 .2410 .2364 236.4 23642 23.64 96 3.456 7.055 2438 179.3 .2436 .2389 238.9 238.90 238.99 243.99	94	3.392	6.906	2387	175.5	.2384	.2339	233.9	23387	23.39
97 3.501 7.128 2464 181.2 2461 .241.4 241.4 241.38 24.14 98 3.537 7.201 2489 183.0 .2486 .2439 243.9 24387 24.39 99 3.573 7.275 2514 184.9 .2512 .2464 246.4 24635 24.63	95	3.429	6.981	2413	177.4	.2410	.2364	236.4	23642	23.64
98 3.537 7.201 2489 183.0 .2486 .2439 243.9 24387 24.39 99 3.573 7.275 2514 184.9 .2512 .2464 246.4 24635 24.64	97	3.501	7.128	2464	181.2	.2461	.2414	241.4	24138	24.14
	98	3.537	7.201	2489	183.0	.2486	.2439	243.9	24387	
100 3.609 7.348 2540 186.8 .2537 .2488 248.8 24883 24.88	99 100	3.573	7.348	2514 2540	184.9 186.8	.2512	.2464 .2488	246.4 248.8	24635 24883	24.64 24.88

P.S.I.	in/H ₂ O	in/Hg	mm/H ₂ O	mm/Hg	kg/cm ²	bar	mbar	Pa	kPa
1.0	27.71	2.036	703.1	51.75	.0703	.0689	68.95	6895	6.895
1.1 1.2	30.45	2.240	773.4	56.89	.0773	.0758	75.84 82.74	7584	7.584
1.2	33.22 35.98	2.443 2.647	843.7 914.0	62.06 67.23	.0844 .0914	.0827 .0896	82.74	8274 8963	8.274 8.963
1.4 1.5	38.75	2.850	984.3	72.40	.0984	.0965	96.52	9652	9.652
1.6	41.52 44.29	3.054 3.258	1055 1125	77.57 82.74	.1055 .1125	.1034	103.4 110.3	10340 11030	10.34 11.03
1.7 1.8	47.06 49.82	3.461 3.665	1195 1266	87.92 93.09	.1195 .1266	.1172 .1241	117.2 124.1	11720 12410	11.72 12.41
1.9	52.59	3.686	1336	98.26	.1336	.1310	131.0	13100	13.10
2.0 2.1	55.36 58.13	4.072 4.276	1406 1476	103.4 108.6	.1406 .1476	.1379 .1448	137.9 144.8	13790 14480	13.79 14.48
2.2	60.90	4.479	1547	113.8	.1547	.1517	151.7	15170	15.17
2.3 2.4	63.67 66.43	4.683 4.886	1617 1687	118.9 124.1	.1617 .1687	.1586 .1655	158.6 165.5	15860 16550	15.86 16.55
2.5	69.20	5.090	1758	129.3	.1758	.1724	172.4	17240	17.24
2.6 2.7	71.97 74.74	5.294 5.497	1828 1898	134.5 139.6	.1828 .1898	.1793 .1862	179.3 186.2	17930 18620	17.93 18.62
2.8	77.51	5.701	1969	144.8	.1968	.1930	193.0	19300	19.30
2.9 3.0	80.27 83.04	5.904 6.108	2039 2109	150.0 155.1	.2039 .2109	.1999 .2068	199.9 206.8	19990 20680	19.99 20.68
3.1 3.2	85.81	6.312	2180	160.3	.2180	.2137	213.7	21370	21.37
3.3	88.58 91.35	6.515 6.719	2250 2320	165.5 170.7	.2250 .2320	.2206 .2275	220.6 227.5	22060 22750	22.06 22.75
3.4 3.5	94.11	6.922 7.126	2390 2461	175.8 181.0	.2390 .2461	.2344 .2413	234.4 241.3	23440 24130	23.44 24.13
3.6	96.88 99.65	7.330	2531	186.2	.2531	.2482	241.3	24130	24.13
3.7 3.8	102.4	7.535 7.737	2601 2672	191.3 196.5	.2601 .2672	.2551 .2620	255.1 262.0	25510 26200	25.51 26.20
3.9	105.2 108.0	7.940	2742	201.7	.2742	.2689	268.9	26890	26.89
4.0 4.1	110.7 113.5	8.144 8.348	2812 2883	206.9 212.0	.2812 .2883	.2758 .2827	275.8 282.7	27580 28270	27.58 28.27
4.2	116.3	8.551	2953	217.2	.2953	.2896	289.6	28960	28.96
4.3 4.4	119.0 121.8	8.775 8.958	3023 3094	222.4 227.5	.3023 .3094	.2965 .3034	296.5 303.4	29650 30338	29.65 30.34
4.5	124.6	9.162	2164	232.7	.3164	.3103	310.3	31030	31.03
4.6 4.7	127.3 130.1	9.366 9.569	3234 3304	237.9 243.1	.3234 .3304	.3172 .3240	317.2 324.0	31720 32400	31.72 32.40
4.8	132.9	9.773	3375	248.2	.3375	.3310	331.0	33100	33.10
4.9 5.0	135.6 138.4	9.976 10.18	3445 3515	253.4 258.6	.3445 .3515	.3378 .3447	337.8 344.7	33780 34470	33.78 34.47
5.1 5.2	141.2	10.38	3586	263.7	.3586	.3516	351.6	35160	35.16
5.3	143.9 146.7	10.59 10.79	3656 3726	268.9 274.1	.3656 .3726	.3585 .3654	358.5 365.4	35850 36540	35.85 36.54
5.4 5.5	149.5 152.2	10.99 11.20	3797 3876	279.3 284.4	.3797 .3867	.3723 .3792	372.3 379.2	37230 37920	37.23 37.92
5.6	152.2	11.40	3973	289.6	.3937	.3861	386.1	38610	38.61
5.7 5.8	157.8 160.5	11.60 11.81	4008 4078	294.8 299.9	.4007 .4078	.3930 .3999	393.0 399.9	39300 39990	39.30 39.99
5.9	163.3	12.01	4148	305.1	.4148	.4068	406.8	40680	40.68
6.0 6.1	166.1 168.8	12.22 12.42	4218 4289	310.3 315.5	.4218 .4289	.4137 .4206	413.7 420.6	41370 42060	41.37 42.06
6.2	171.6	12.62	4359	320.6	.4359	.4275	427.5	42750	42.75
6.3 6.4	174.4 177.2	12.83 13.03	4429 4500	325.8 331.0	.4429 .4500	.4344 .4413	434.4 441.3	43440 44130	43.44 44.13
6.5 6.6	179.9	13.23	4570	336.1	.4570	.4482	448.2	44820	44.82
6.7	182.7 185.5	13.44 13.64	4640 4711	341.3 346.5	.4640 .4710	.4550 .4619	455.0 461.9	45500 46190	45.50 46.19
6.8 6.9	188.2 191.0	13.84 14.05	4781 4851	351.7 356.8	.4781 .4851	.4688 .4757	468.8 475.7	46880 47570	46.88 47.57
7.0	193.8	14.25	4922	362.0	.4921	.4826	482.6	48260	48.26
7.1 7.2	196.5 199.3	14.46 14.66	4992 5062	367.2 372.3	.4992 .5062	.4895 .4964	489.5 496.4	48950 49640	48.95 49.64
7.3	202.1	14.86	5132	377.5	.5132	.5033	503.3	50330	50.33
7.4 7.5	204.8 207.6	15.07 15.27	5203 5273	382.7 387.9	.5203 .5273	.5102 .5171	510.2 517.1	51020 51710	51.02 51.71
7.6	210.4	15.47	5343	393.0	.5343	.5240	524.0	52400	52.40
7.8 8.0	215.9 221.4	15.88 16.29	5484 5625	403.4 413.7	.5484 .5625	.5378 .5516	537.8 551.6	53780 55160	53.78 55.16
8.2	227.0	16.70	5765	424.1	.5765	.5654	565.4	56540	56.54
8.4 8.6	232.5 238.0	17.10 17.51	5906 6047	434.4 444.7	.5906 .6046	.5792 .5929	579.2 592.9	57920 59290	57.92 59.29
8.8 9.0	243.6	17.92 18.32	6187 6328	455.1 465.4	.6187 .6328	.6067 .6205	606.7 620.5	60670 62050	60.67 62.05
9.2	249.1 254.7	18.73	6468	475.8	.6468	.6343	634.3	63430	63.43
9.4 9.6	260.2 265.7	19.14 19.54	6609 6750	486.1 496.5	.6609 .6749	.6481 .6619	648.1 661.9	64810 66190	64.81 66.19
9.8	271.3	19.95	6890	506.8	.6890	.6757	675.7	67570	67.57
10.0 11.0	276.8 304.5	20.36 22.40	7031 7734	517.1 568.9	.7031 .7734	.6895 .7584	689.5 758.4	68950 75840	68.95 75.84
12.0	332.2	24.43	8437	620.6	.8437	.8274	827.4	82740	82.74
13.0 14.0	359.8 387.5	26.47 28.50	9140 9843	672.3 724.0	.9140 .9843	.8963 .9652	896.3 965.2	98630 96520	89.63 96.52
14.7 15.0	406.9	29.93	10340	760.2	1.033	1.014	1014	101400	101.4
16.0	415.2 442.9	30.54 32.58	10550 11250	775.7 827.4	1.055 1.125	1.034 1.103	1034 1103	103400 110300	103.4 110.3
17.0 18.0	470.6 498.2	34.61 36.65	11950 12660	879.1 930.9	1.195 1.265	1.172 1.241	1172 1241	117200 124100	117.2 124.1
19.0	525.9	36.68	13360	982.6	1.336	1.310	1310	131000	131.0
20.0 21.0	553.6 581.3	40.72 42.76	14060 14770	1034 1086	1.406 1.476	1.379 1.448	1379 1448	137900 144800	137.9 144.8
22.0	609.0	44.79	15470	1138	1.547	1.517	1517	151700	151.7
23.0 24.0	636.7 664.3	46.83 48.86	16170 16870	1189 1241	1.617 1.687	1.586 1.655	1586 1655	158600 165500	158.6 165.5
25.0	692.0	50.90	17580	1293	1.758	1.724	1724	172400	172.4
CONVE	RSION		P	S.I. x 27	71 = in.	H ₂ O	PSI	x .0689	= bar
FACTO					36 = in.	-		x 68.95	
NOTE:					3.1 = mr	-		x 6895 =	
	SION FAC	CTORS			75 = mr	-		x 6.895	
ROUNDE	D		P.5	6.I. x .07	03 = kg,	/cm ²			

Magnehelic Accessories

DWYER INSTRUMENTS, INC.

P.O. Box 373 Michigan City, IN 46361-9986

Return Service Requested

Dwyer Instruments, Incorporated, has presence in 45 countries. Please contact us for your nearest Dwyer representative.

Dwyer Instruments, Incorporated, hat Niederlassungen in 45 Ländern. Bitte setzen Sie sich wegen Ihres nächsten Kontaktmannes mit uns in Verbindung.

Dwyer Instruments, Incorporated, ha una presenza in 45 nazioni. Chiamateci per il nome del rappresentante più vicino.

Dwyer Instruments, Incorporated, a ètabli une prèsence dans 45 pays. Prière de nous contacter pour sacoir le nom du représentant Dwyer le plus proche.

Corporate Headquarters

Dwyer Instruments, Inc. 102 Indiana Highway 212 P.O. Box 373 Michigan City, IN 46361 U.S.A. Telephone: 219/879-8000 Fax: 219/872-9057

Houston Office Telephone: 281/446-1146 Fax: 281/446-0696

Australia (AUS)

Dwyer Instruments, Pty. Ltd. Unit 4, 11 Waverley Drive Unanderra, NSW 2526 Australia Telephone: 61 2 4272 2055 Fax: 61 2 4272 4055

United Kingdom GB

Dwyer Instruments Ltd Unit 16, The Wye Estate, London Road High Wycombe, Bucks HP11 1LH-U.K. Telephone: (+44) (0)1494 461707 Fax: (+44) (0)1494 465102